Comparison of Numerical Simulations to Experiments for Atomization in a Jet Nebulizer
نویسندگان
چکیده
The development of jet nebulizers for medical purposes is an important challenge of aerosol therapy. The performance of a nebulizer is characterized by its output rate of droplets with a diameter under 5 µm. However the optimization of this parameter through experiments has reached a plateau. The purpose of this study is to design a numerical model simulating the nebulization process and to compare it with experimental data. Such a model could provide a better understanding of the atomization process and the parameters influencing the nebulizer output. A model based on the Updraft nebulizer (Hudson) was designed with ANSYS Workbench. Boundary conditions were set with experimental data then transient 3D calculations were run on a 4 µm mesh with ANSYS Fluent. Two air flow rate (2 L/min and 8 L/min, limits of the operating range) were considered to account for different turbulence regimes. Numerical and experimental results were compared according to phenomenology and droplet size. The behavior of the liquid was compared to images acquired through shadowgraphy with a CCD Camera. Three experimental methods, laser diffractometry, phase Doppler anemometry (PDA) and shadowgraphy were used to characterize the droplet size distributions. Camera images showed similar patterns as numerical results. Droplet sizes obtained numerically are overestimated in relation to PDA and diffractometry, which only consider spherical droplets. However, at both flow rates, size distributions extracted from numerical image processing were similar to distributions obtained from shadowgraphy image processing. The simulation then provides a good understanding and prediction of the phenomena involved in the fragmentation of droplets over 10 µm. The laws of dynamics apply to droplets down to 1 µm, so we can assume the continuity of the distribution and extrapolate the results for droplets between 1 and 10 µm. So, this model could help predicting nebulizer output with defined geometrical and physical parameters.
منابع مشابه
Multiscale simulations of primary atomization
A liquid jet upon atomization breaks up into small droplets that are orders of magnitude smaller than its diameter. Direct numerical simulations of atomization are exceedingly expensive computationally. Thus, the need to perform multiscale simulations. In the present study, we performed multiscale simulations of primary atomization using a Volume-of-Fluid (VOF) algorithm coupled with a two-way ...
متن کاملDetailed Numerical Simulations of the Primary Atomization of a Turbulent Liquid Jet in Crossflow
This paper presents numerical simulation results of the primary atomization of a turbulent liquid jet injected into a gaseous crossflow. Simulations are performed using the balanced force refined level set grid method. The phase interface during the initial breakup phase is tracked by a level set method on a separate refined grid. A balanced force finite volume algorithm together with an interf...
متن کاملGTP-09-1151 Detailed Numerical Simulations of the Primary Atomization of a Turbulent Liquid Jet in Crossflow
This paper presents numerical simulation results of the primary atomization of a turbulent liquid jet injected into a gaseous crossflow. Simulations are performed using the balanced force Refined Level Set Grid method. The phase interface during the initial breakup phase is tracked by a level set method on a separate refined grid. A balanced force finite volume algorithm together with an interf...
متن کاملExperimental study and numerical simulation of three dimensional two phase impinging jet flow using anisotropic turbulence model
Hydrodynamic of a turbulent impinging jet on a flat plate has been studied experimentally and numerically. Experiments were conducted for the Reynolds number range of 72000 to 102000 and a fixed jet-to-plate dimensionless distance of H/d=3.5. Based on the experimental setup, a multi-phase numerical model was simulated to predict flow properties of impinging jets using two turbulent models. Mesh...
متن کاملNumerical Investigation of Flow Field of D87 Dual Fuel Engine
A newly developed heavy duty diesel engine in dual fuel mode of operation has been studied in detail. The main fuel would be natural gas and diesel oil as pilot injection. The importance and effects of mixture preparation and formation through ports, valves and in cylinder flow field with different swirl ratio and tumble on diesel combustion phenomena is an accepted feature which has been studi...
متن کامل